LA COMPLESSITÀ IN MALATTIE INFETTIVE: NUOVI PARADIGMI GESTIONALI. PARTE SECONDA

L'ARMAMENTARIO TERAPEUTICO ANTI GRAM NEGATIVI DOMANI

FEDERICO PEA

DIPARTIMENTO AREA MEDICA, UNIVERSITA' DEGLI STUDI DI UDINE

ISTITUTO DI FARMACOLOGIA CLINICA, PRESIDIO OSPEDALIERO UNIVERSITARIO SM MISERICORDIA UDINE

Bologna, 17 Settembre 2019

DEFINING ADEQUATE ANTIMICROBIAL THERAPY IN SEVERE INFECTIONS

- For antimicrobial therapy to be adequate, three requirements need to be fulfilled.
- First, the antimicrobial agent(s) should be initiated as soon as possible after the onset of sepsis.
- · Second, as therapy is to be initiated empirically, the antimicrobial spectrum of the agent should

be broad enough to cover the potential causative microorganisms.

- Finally, appropriate antimicrobial dosing is required to:
 - maximize microbial killing,
 - minimize the development of multidrug antimicrobial resistance,
 - and avoid concentration-related adverse drug reactions.

Blot S, Pea F, Lipman J. Adv Drug Deliv Rev 2014; 77: 3-11

DOSE SELECTION AND VALIDATION FOR CEFTAZIDIME-AVIBACTAM IN ADULTS WITH cIAIs, cUTIs, AND NP

Das S et al. Antimicrob Agents Chemother 2019 Mar 27; 63(4). pii: e02187-18

JOINT PTA FOR PATIENTS WITH CIAI RECEIVING CEFTAZIDIME-AVIBACTAM 2000/500 MG Q8H PLOTTED AS A FUNCTION OF CEFTAZIDIME-AVIBACTAM MIC OVERLAYING THE CEFTAZIDIME-AVIBACTAM MIC DISTRIBUTIONS FROM THE INFORM GLOBAL SURVEILLANCE STUDY (2012 TO 2014)

PTA = Probability of Target Attainment

PHASE 1 STUDY ASSESSING THE STEADY-STATE CONCENTRATION OF CEFTAZIDIME AND AVIBACTAM IN PLASMA AND ELF FOLLOWING TWO DOSING REGIMENS

Nicolau DP et al. J Antimicrob Chemother 2015; 70: 2862-2869

SUMMARY OF KEY PK PARAMETERS OF CEFTAZIDIME AND AVIBACTAM

	AVI				CAZ		
Parameter, cohort	plasma		ELF, composite profile ^a		plasma		ELF, composite profile ^a
Geometric mean (CV, %) C _{max} (mg/L) 2000 mg of CAZ+500 mg of AVI (<i>n</i> =22)	14.5 (9.7)		5.1		90.1 (13.3)		23.2
Geometric mean (CV, %) AUC _{τ} (mg·h/L) 2000 mg of CAZ+500 mg of AVI ($n=22$)	39.2 (9.7)		13.7		295 (13.0)		92.3
Median (range) T _{max} (h) 2000 mg of CAZ+500 mg of AVI (n=22)	2.00 (1.97–2.02)		2.0		2.00 (1.97-2.02)		2.0
Mean (SD) <i>t</i> _{1/2} (h) 2000 mg of CAZ+500 mg of AVI (<i>n</i> =22)	3.29 (0.82)		1.94		2.86 (0.294)		3.77

• Ceftazidime C_{max} and AUC_t in ELF were ~ 23%–26% and 31%–32% of plasma exposure

Avibactam C_{max} and AUC_t in ELF were ~ 28%-35% and 32%-35% of plasma exposure
 UniUD

OPTIMIZING ANTIBIOTIC ADMINISTRATION FOR PNEUMONIA

Dimelow R et al Clin Chest Med 2018; 39: 837-852

DISTRIBUTION OF P aeruginosa AND Enterobacteriaceae ISOLATES FROM HABP PATIENTS IN US MEDICAL CENTERS (2011-2015) IN TERMS OF CEFTAZIDIME/AVIBACTAM MIC LEVEL AND THE PTA OF FT > MIC FOR CEFTAZIDIME/AVIBACTAM, USING 2.5 G EVERY 8 HOURS AS A 2-HOUR INFUSION

DOSE SELECTION AND VALIDATION FOR CEFTAZIDIME-AVIBACTAM IN ADULTS WITH cIAIs, cUTIs, AND NP

Das S et al. Antimicrob Agents Chemother 2019 Mar 27; 63(4). pii: e02187-18

CEFTAZIDIME-AVIBACTAM DOSAGE ADJUSTMENTS FOR RENAL IMPAIRMENT EMPLOYED IN THE PHASE 3 TRIALS AND APPROVED MODIFICATIONS TO ORIGINAL DOSAGE ADJUSTMENTS BY RENAL FUNCTION CATEGORY

	Original ceftazidime-avibactam		Joint P	TA for a target MIC of 8 mg/liter
	dosage regimen included in	Modified dosage	in patie	ents with cIAI receiving approved
Renal function category	protocol for phase 3 trials ^b	regimen ^c	modifie	ed dosage adjustments (%) ^d
Normal CL _{CR} >80 ml/min	2,000 + 500 mg q8h	NA	94.9	
Mild renal impairment CL _{CR} 51–80 ml/min	2,000 + 500 mg q8h	NA	99.0	
Moderate renal impairment CL _{CR}	1,000 + 250 mg q12h	1,000 + 250 mg q8h	99.3	
31–50 ml/min				
Severe renal impairment (upper range	1,000 + 250 mg q24h	750 + 187.5 mg q12h	99.0	
of CL _{CR}) CL _{CR} 16–30 ml/min				
Severe renal impairment (lower range	500 + 125 mg q24h	750 + 187.5 mg q24h	99.3	
of CL _{CR}) CL _{CR} 6–15 ml/min				
End-stage renal disease $CL_{CR} < 6 \text{ ml/min}$	500 + 125 mg q48h	750 + 187.5 mg q48h	99.6	

PTA = Probability of Target Attainment

RECOMMENDED DOSES FOR PATIENTS WITH VARYING DEGREES OF RENAL IMPAIRMENT

Creatinine clearance,	D. 1.		
ml/min	Dosage recommendation		
31–50	Ceftazidime 1 g-avibactam 0.25 g every	<mark>8 hrs</mark> over 2	2 h
16–30	Ceftazidime 0.75 g–avibactam 0.19 g eve	ry 12 hrs	
6–15	Ceftazidime 0.75 g–avibactam 0.19 g eve	ry 24 hrs	
≤ 5	Ceftazidime 0.75 g–avibactam 0.19 g eve	ry 48 hrs	

DEFINING ADEQUATE ANTIMICROBIAL THERAPY IN SEVERE INFECTIONS

- For antimicrobial therapy to be adequate, three requirements need to be fulfilled.
- First, the antimicrobial agent(s) should be initiated as soon as possible after the onset of sepsis.
- · Second, as therapy is to be initiated empirically, the antimicrobial spectrum of the agent should

be broad enough to cover the potential causative microorganisms.

- Finally, appropriate antimicrobial dosing is required to:
 - maximize microbial killing,

minimize the development of multidrug antimicrobial resistance,

• and avoid concentration-related adverse drug reactions.

Blot S, Pea F, Lipman J. Adv Drug Deliv Rev 2014; 77: 3-11

Antimicrob Agents Chemother. 2018 Apr 26;62(5). pii: e02497-17. doi: 10.1128/AAC.02497-17. Print 2018 May.

Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections.

Shields RK^{1,2}, Nguyen MH^{3,2}, Chen L⁴, Press EG¹, Kreiswirth BN⁴, Clancy CJ^{1,2,5}.

Author information

Abstract

Ceftazidime-avibactam was used to treat 77 patients with carbapenem-resistant *Enterobacteriaceae* (CRE) infections at our center. Thirtyand 90-day survival rates were 81% and 69%, respectively; these rates were higher than those predicted by SAPS II and SOFA scores at the onset of infection. Clinical success was achieved for 55% of patients but differed by the site of infection. Success rates were lowest for pneumonia (36%) and higher for bacteremia (75%) and urinary tract infections (88%). By multivariate analysis, pneumonia (P = 0.045) and receipt of renal replacement therapy (RRT) (P = 0.046) were associated with clinical failure. Microbiologic failures occurred in 32% of patients and occurred more commonly among patients infected with KPC-3-producing CRE than among those infected with KPC-2-producing CRE (P = 0.002). Pneumonia was an independent predictor of microbiologic failure (P = 0.007). Ceftazidime-avibactam resistance emerged in 10% of patients, including 14% of those infected with *Klebsiella pneumoniae* and 32% of those with microbiologic failure. RRT was an independent predictor of the development of resistance (P = 0.009). Resistance was identified exclusively among *K. pneumoniae* bacteria harboring variant KPC-3 enzymes. Upon phylogenetic analysis of whole-genome sequences, resistant isolates from 87.5% (7/8) of patients clustered within a previously defined sequence type 258 (ST258) clade II sublineage; resistant isolates from one patient clustered independently from other ST258 clade II isolates. In conclusion, our report offers new insights into the utility and limitations of ceftazidime-avibactam across CRE infection types. Immediate priorities are to identify ceftazidime-avibactam dosing and therapeutic regimens that improve on the poor outcomes among patients with pneumonia and those receiving RRT.

REVERSAL OF CARBAPENEMASE-PRODUCING K. pneumoniae EPIDEMIOLOGY FROM bla_{KPC}- TO bla_{VIM}-HARBOURING ISOLATES IN A GREEK ICU AFTER INTRODUCTION OF CEFTAZIDIME/AVIBACTAM

Papadimitriou-Olivgeris M et al. J Antimicrob Chemother 2019 Jul; 74: 2051-2054

REVERSAL OF CARBAPENEMASE-PRODUCING K. pneumoniae EPIDEMIOLOGY FROM bla_{KPC}- TO bla_{VIM}-HARBOURING ISOLATES IN A GREEK ICU AFTER INTRODUCTION OF CEFTAZIDIME/AVIBACTAM Papadimitriou-Olivgeris M et al. J Antimicrob Chemother 2019 Jul; 74: 2051-2054

UNIVARIATE ANALYSIS OF RISK FACTORS FOR CEFTAZIDIME/AVIBACTAM RESISTANT BSI

Characteristic	CZA-S BSI (<i>n</i> = 18)	CZA-R BSI $(n = 27)$	P
Days at risk ^a	45.8 ± 64.6	53.5 ± 70.7	0.372
Demographics			
age (years)	60.2 ± 15.5	50.4 ± 14.6	0.041
malegender	14 (77.8)	21 (77.8)	1.000
Chronic diseases			
diabetes mellitus	2 (11.1)	2 (11.1)	1.000
COPD	0 (0.0)	4 (14.8)	0.138
chronic heart failure	0 (0.0)	1 (3.7)	1.000
chronic renal failure	0 (0.0)	3 (11.1)	0.264
malignancy	1 (5.8)	1 (3.7)	1.000
immunosuppression	0 (0.0)	1 (3.7)	1.000
obesity (BMI ≥30 kg/m²)	7 (38.9)	8 (29.6)	0.538
Charlson Comorbidity Index	2.6±1.8	2.6±3.3	0.368
Admission data			
APACHE II score upon admission	19.3 ± 5.3	16.2 ± 5.4	0.128
prior surgery	0 (33.3)	8 (29.6)	1.000

Characteristic	CZA-S BSI (n = 18)	CZA-R BSI $(n = 27)$	P
Prior antibiotic administration ^b			
penicillin/β-lactamase inhibitors	11 (61.1)	24 (88.9)	0.084
third- and fourth-generation cephalosporins	4 (22.2)	13 (48.1)	0.118
ceftazidime/avibactam	1 (5.6)	13 (48.1)	0.003
carbapenems	13 (72.2)	19 (70.4)	1.000
quinolones	3 (16.7)	10 (37.0)	0.188
colistin	12 (66.7)	20 (74.1)	0.739
aminoglycosides	6 (33.3)	5 (18.5)	0.304
fosfomycin	2 (11.1)	2 (7.4)	1.000
tigecycline	11 (61.1)	17 (63.0)	1.000
glycopeptides	15 (83.3)	20 (74.1)	0.718
linezolid	10 (55.8)	20 (74.1)	0.218
daptomycin	4 (22.2)	10 (37.0)	0.343
number of antibiotics administered	5.3 ± 2.9	6.6 ± 2.8	0.138
antifungal administration	11 (61.1)	21 (77.8)	0.317

Ch	aracteristic	CZA-S BSI (n = 18)	CZA-R BSI $(n = 27)$	P
ICU	J procedures			
	corticosteroid administration	12 (66.7)	17 (63.0)	1.000
	parenteral nutrition	10 (55.6)	12 (44.4)	0.550
	enteral nutrition	12 (66.7)	22 (81.5)	0.304
Mi	crobiological data			
	resistance of bacteraemic isolate			
	meropenem	18 (100)	27 (100)	-
	colistin	12 (66.7)	8 (29.6)	0.031
	tigecycline	4 (22.2)	9 (33.3)	0.514
	gentamicin	18 (100)	25 (92.6)	0.509
	fosfomycin	8 (44.4)	11 (40.7)	1.000
	primary bacteraemia	7 (38.9)	16 (59.3)	0.231

Data are n (%) of patients or mean ± SD.

a Length of stay until BSI development.

b Administration on the last 30 days prior to BSI onset.

HOW TO MINIMIZE THE EMERGENCE OF RESISTANCE ?

DETERMINING B-LACTAM EXPOSURE THRESHOLD TO SUPPRESS RESISTANCE DEVELOPMENT IN GRAM-NEGATIVE BACTERIA

Tam V et al. J Antimicrob Chemother 2017; 72: 1421-1428

STUDY DESIGN

- Two strains of Klebsiella pneumoniae and two strains of Pseudomonas aeruginosa were examined
- Various dosing exposures of cefepime, ceftazidime and meropenem were simulated in the hollowfibre infection model
- Serial samples were obtained to ascertain the pharmacokinetic simulations and viable bacterial burden for up to 120 h
- Resistance development was detected by quantitative culture on drug-supplemented media plates
- The Cmin/MIC breakpoint threshold to prevent bacterial regrowth was identified by classification and regression tree (CART) analysis

DETERMINING B-LACTAM EXPOSURE THRESHOLD TO SUPPRESS RESISTANCE DEVELOPMENT IN GRAM-NEGATIVE BACTERIA

Tam V et al. J Antimicrob Chemother 2017; 72: 1421-1428

	SUSCEPTIBILITY	AND RESISTANCE MEC	HANISMS OF THE CLIN	CLINICAL STRAINS USED		
Bacteria	Cefepime	Ceftazidime	Meropenem	MLST (ST)	Resistance mechanism	
K. pneumoniae (Kp1)	0.25	0.5	0.06	ST678	WT	
K. pneumoniae (Kp2)	16	64	0.06	ST16	CTX-M-15	
P. aeruginosa (Pa1)	0.5	1	0.13	ST319	WT	
P. aeruginosa (Pa2)	16	64	0.25	ST175	AmpC overexpression	

Bold font indicates resistant phenotype according to EUCAST breakpoints.

DETERMINING B-LACTAM EXPOSURE THRESHOLD TO SUPPRESS RESISTANCE DEVELOPMENT IN GRAM-NEGATIVE BACTERIA

Tam V et al. J Antimicrob Chemother 2017; 72: 1421-1428

Shields RK et al. Antimicrob Agents Chemother 2018 Jul 27;62(8). pii: e01018-18

MOLECULAR CHARACTERISTICS, DRUG MICS, AND TIME-KILL RESULTS OF 24 CRE ISOLATES

	<i>bla_{крс}</i> WT or variant	MIC (μg/n	nl) ^{<i>b</i>}
Isolate	(ompK36 genotype) ^a	C-A	COL
Kp-347	KPC-2 (WT)	0.5	0.25
Kp-142	KPC-2 (WT)	0.5	0.25
Kp-465	KPC-2 (WT)	1	0.5
Kp-669	KPC-2 (AA134-135)	0.5	0.25
Kp-115	KPC-2 (AA134-135)	1	0.125
Kp-436	KPC-2 (AA134-135)	1	0.25
Kp-155	KPC-2 (AA134-135)	2	0.25
Kp-873	KPC-2 (IS5)	1	0.25
Kp-937	KPC-2 (IS5)	2	0.25
Kp-306	KPC-3 (WT)	0.5	0.5
Kp-779	KPC-3 (WT)	1	0.25
Kp-929	KPC-3 (WT)	1	0.125
Kp-928	KPC-3 (WT)	2	0.5
Kp-930	KPC-3 (WT)	4	0.06
Kp-913	KPC-3 (IS <i>5</i>)	0.5	0.25
Kp-380	No KPC (IS5)	4	0.5
En-102	KPC-2	0.5	0.06
En-24	KPC-2	1	0.06
En-150	KPC-3	2	0.125
En-6	KPC-3	4	0.125
Ec-13	No KPC	0.25	0.125
Ec-42	KPC-2	1	0.06
KI-1173	KPC-3	4	0.06
Ct-83	KPC-3	8	0.06

Shields RK et al. Antimicrob Agents Chemother 2018 Jul 27;62(8). pii: e01018-18

MEAN LOG KILLS OF ALL 24 CRE ISOLATES AT CEFTAZIDIME-AVIBACTAM CONCENTRATIONS RANGING FROM 0.25 TO 4 \times MIC. AVIBACTAM WAS FIXED AT 4 μ G/ML IN ALL EXPERIMENTS

Shields RK et al. Antimicrob Agents Chemother 2018 Jul 27;62(8). pii: e01018-18

MEAN LOG KILLS OF ALL 24 CRE ISOLATES BY CEFTAZIDIME-AVIBACTAM (C-A, 4×MIC), 2 µG/ML COLISTIN ALONE, OR A COMBINATION OF BOTH AGENTS.

Shields RK et al. Antimicrob Agents Chemother 2018 Jul 27;62(8). pii: e01018-18

MOLECULAR CHARACTERISTICS, DRUG MICS, AND TIME-KILL RESULTS OF 24 CRE ISOLATES

		MIC									
	blakec WT or variant	(µg/n	า l) ^{<i>b</i>}	Log kill at 12 h (CFU	J/ml) ^c		Interpretation	Log kill at 24 h (CFU	J/ml) ^c		Interpretation
Isolate	(ompK36 genotype) ^a	C-A	COL	C-A at $4 \times$ the MIC	2 μ g/ml COL	C-A plus COL	at 12 h	C-A at 4× the MIC	2 μ g/ml COL	C-A plus COL	at 24 h
Kp-347	KPC-2 (WT)	0.5	0.25	-0.57	-3.70	-5.96	Synergy	-1.28	-0.99	-5.96	Synergy
Kp-142	KPC-2 (WT)	0.5	0.25	1.97	-6.11	-6.10	Indifferent	4.17	-0.01	-0.62	Indifferent
Kp-465	KPC-2 (WT)	1	0.5	-6.19	-2.01	-6.26	Indifferent	-6.19	3.73	-0.85	Antagonism
Kp-669	KPC-2 (AA134-135)	0.5	0.25	-4.65	-6.18	- <mark>6</mark> .15	Indifferent	-6.26	-2.67	-6.15	Indifferent
Kp-115	KPC-2 (AA134-135)	1	0.125	-3.80	-3.34	-6.25	Synergy	-4.95	2.54	-0.33	Antagonism
Kp-436	KPC-2 (AA134-135)	1	0.25	-4.47	-6.24	-6.25	Indifferent	-6.25	-2.22	-2.18	Antagonism
Kp-155	KPC-2 (AA134-135)	2	0.25	-3.46	-6.23	-6.04	Indifferent	2.29	-3.85	-2.13	Antagonism
Kp-873	KPC-2 (IS5)	1	0.25	-3.24	-6.10	-6.24	Indifferent	-4.07	-0.98	-0.44	Antagonism
Kp-937	KPC-2 (IS5)	2	0.25	-3.67	-6.19	-6.21	Indifferent	-4.35	1.39	-6.21	Indifferent
Kp-306	KPC-3 (WT)	0.5	0.5	2.15	-4.18	-6.15	Indifferent	3.33	3.44	-6.15	Synergy
Kp-779	KPC-3 (WT)	1	0.25	-4.80	-6.23	-6.26	Indifferent	-2.39	-6.23	-6.26	Indifferent
Kp-929	KPC-3 (WT)	1	0.125	-4.79	-6.04	-6.15	Indifferent	-4.79	-2.66	-2.90	Antagonism
Kp-928	KPC-3 (WT)	2	0.5	-3.33	1.93	-3.85	Indifferent	-3.99	4.15	-1.70	Antagonism
Kp-930	KPC-3 (WT)	4	0.06	-4.53	-6.24	-6.14	Indifferent	-6.13	-3.82	-6.14	Indifferent
Kp-913	KPC-3 (IS <i>5</i>)	0.5	0.25	-3.19	-6.02	-6.05	Indifferent	2.68	-4.11	-1.70	Antagonism
Kp-380	No KPC (IS5)	4	0.5	-3.99	-6.13	-6.15	Indifferent	-0.71	1.74	-2.81	Synergy
En-102	KPC-2	0.5	0.06	-3.75	-6.07	-6.11	Indifferent	-4.45	-6.07	-6.11	Indifferent
En-24	KPC-2	1	0.06	-3.47	-6.02	-6.03	Indifferent	-4.32	-3.28	-6.03	Indifferent
En-150	KPC-3	2	0.125	-4.26	-6.09	-6.12	Indifferent	-4.86	-6.09	-3.92	Antagonism
En-6	KPC-3	4	0.125	-3.83	-6.09	-6.09	Indifferent	-4.35	2.96	-6.09	Indifferent
Ec-13	No KPC	0.25	0.125	-3.96	-0.23	-6.18	Synergy	-4.61	3.72	-2.07	Antagonism
Ec-42	KPC-2	1	0.06	-6.19	-6.23	-6.21	Indifferent	-1.61	-6.23	-6.21	Indifferent
KI-1173	KPC-3	4	0.06	-4.83	-6.17	-6.09	Indifferent	-6.13	-4.39	-6.09	Indifferent
Ct-83	KPC-3	8	0.06	-6.25	-6.25	-6.28	Indifferent	-6.25	-3.10	-2.73	Antagonism

OPTIMIZATION OF THE TREATMENT WITH BETA-LACTAM ANTIBIOTICS IN CRITICALLY ILL PTS GUIDELINES FROM THE FRENCH SOCIETY OF PHARMACOLOGY AND THERAPEUTICS Guilhaumou R et al. Crit Care 2019 Mar 29; 23: 104

CARE PROTOCOL SUGGESTED BY THE EXPERT

24h af modific the tre

New measurement of beta-lactam plasma concentration and therapeutic adjustment if needed

WHAT ABOUT DOSING STRATEGIES ?

FACTORS POTENTIALLY ALTERING THE PK OF ANTIMICROBIALS IN CRITICALLY ILL PATIENTS

Pea F. Physiological Manifestations of Critical Illness. In: Udy AA, Roberts JA, Lipman J, eds.

Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill. Singapore: Springer Singapore, 2018; 31-46.

niUD

RENAL DOSING OF ANTIBIOTICS: ARE WE JUMPING THE GUN?

Crass RL et al. Clin Infect Dis 2019 Apr; 68: 1596-1602

ABSTRACT

- Ceftolozane/tazobactam, ceftazidime/avibactam, and telavancin all carry precautionary statements for reduced clinical response in patients with baseline ClCr 30-50 mL/min, potentially due to unnecessary dose reduction in the setting of acute kidney injury (AKI).
- In this review, we discuss the regulatory landscape for antibiotics eliminated by the kidney and highlight the importance of the first 48 hours of therapy.
- Using a clinical database, we identify AKI on admission in a substantial proportion of patients with pneumonia (27.1%), intra-abdominal (19.5%), urinary tract (20.0%), or skin and skin structure infections (9.7%) that resolved by 48 hours in 57.2% of cases.

RENAL DOSING OF ANTIBIOTICS: ARE WE JUMPING THE GUN?

Crass RL et al. Clin Infect Dis 2019 Apr; 68: 1596-1602

FRACTIONAL CHANGE IN SERUM CREATININE RELATIVE TO BASELINE THROUGH THE FIRST 4 DAYS OF ADMISSION.

RENAL DOSING OF ANTIBIOTICS: ARE WE JUMPING THE GUN?

Crass RL et al. Clin Infect Dis 2019 Apr; 68: 1596-1602

ABSTRACT

- Ceftolozane/tazobactam, ceftazidime/avibactam, and telavancin all carry precautionary statements for reduced clinical response in patients with baseline ClCr 30-50 mL/min, potentially due to unnecessary dose reduction in the setting of acute kidney injury (AKI).
- In this review, we discuss the regulatory landscape for antibiotics eliminated by the kidney and highlight the importance of the first 48 hours of therapy.
- Using a clinical database, we identify AKI on admission in a substantial proportion of patients with pneumonia (27.1%), intra-abdominal (19.5%), urinary tract (20.0%), or skin and skin

structure infections (9.7%) that resolved by 48 hours in 57.2% of cases.

• We suggest that deferred renal dose reduction of wide therapeutic index antibiotics could

improve outcomes in patients with infectious diseases.

CLINICAL PK/PD OF CEFTAZIDIME-AVIBACTAM COMBINATION: A MODEL-INFORMED STRATEGY FOR ITS CLINICAL DEVELOPMENT

Sy SKB et al. Clin Pharmacokinet 2019 May; 58(5): 545-564

PROBABILITY OF TARGET ATTAINMENT OF 50% **fT** > MIC FOR CEFTAZIDIME AND 50% **fT** >CT OF 1.0 MG/L AVIBACTAM IN PATIENTS WITH CIAI FOR VARIOUS RENAL FUNCTION GROUPS, WITH CEFTAZIDIME-AVIBACTAM ADMINISTERED AS A 2-H INTRAVENOUS INFUSION

	Ceftolozane/tazobactam
FDA indications	cIAI (with metronidazole), cUTI (including
Dosing	pyciolicplifics)
CL _{Cr} >50 mL/min	1.5 g i.v. <mark>q8h</mark>
CL _{Cr} 30–50 mL/min ^a	750 mg i.v. <mark>q8h</mark>
CL _{Cr} 15–29 mL/min ^b	375 mg i.v. <mark>q8h</mark>
CL _{Cr} 6–15 mL/min	N/A
$CL_{Cr} \leq 5 mL/min$	N/A
ESRD on HD	Load 750 mg i.v. \times 1, then 150 mg i.v. q8h
Infusion time	1 h
Ratio of cephalosporin	2:1 ceftolozane:tazobactam
Hepatic dosage adjustr	nent No
Drug interactions	No clinically significant CYP450 interactions. No other enzymatic interactions anticipated

Liscio JL et al. Int J Antimicrob Agents 2015 Sep; 46 (3): 266-71

BETA-LACTAMASE INHIBITORS: WHAT YOU REALLY NEED TO KNOW

Ambrose P et al. Curr Opin Pharmacol 2017; 36:86-93

KNOW THE B-LACTAM-B-LACTAMASE INHIBITOR EXPOSURE THAT PREVENTS RESISTANCE AMPLIFICATION

• Establishing a B-lactam-B-lactamase inhibitor dosage regimen based on exposures

required for the suppression of resistance amplification, instead of just inhibition of bacterial growth, may necessitate the use of extended infusions, large doses, and

requires substantial safety margins for both the β -lactam- β -lactamase inhibitor

PHARMACOKINETIC AND PHARMACODYNAMIC PROPERTIES OF ANTIMICROBIAL AGENTS

	Concentration-dependent	Time-dependent	Concentration-dependent with time-dependence
Objective Optimal PK/PD index Antimicrobials	Maximize concentrations C _{max} /MIC Aminoglycosides Daptomycin Fluoroquinolones Ketolides Metronidazole Quinupristin/dalfopristin	Maximize duration of exposure T > MIC Carbapenems Cephalosporins Erythromycin Linezolid Clarithromycin Lincosamides Penicillins MDD → EI-CI	Maximize amount of drug exposure AUC _{0-24 h} / MIC Azithromycin Clindamycin Linezolid Tetracyclines Fluoroquinolones Aminoglycosides Quinupristin/dalfopristin Tigecycline Vancomycin

FACTORS POTENTIALLY ALTERING THE PK OF ANTIMICROBIALS IN CRITICALLY ILL PATIENTS

Pea F. Physiological Manifestations of Critical Illness. In: Udy AA, Roberts JA, Lipman J, eds.

Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill. Singapore: Springer Singapore, 2018; 31-46.

niUD

AUGMENTED RENAL CLEARANCE

Cook AM and Hatton-Kolpek J. Pharmacotherapy 2019 Mar; 39(3): 346-354

POTENTIAL CONTRIBUTING FACTORS TO AUGMENTED RENAL CLEARANCE

AUGMENTED RENAL CLEARANCE

Cook AM and Hatton-Kolpek J. Pharmacotherapy 2019 Mar; 39(3): 346-354

SUMMARY OF POPULATIONS EXHIBITING AUGMENTED RENAL CLEARANCE

Population Prevalence (%) Mean Cl_{cr} values Burn⁵ 172.1 ml/min/1.73 m² 65 $157.4 \text{ ml/min}/1.73 \text{ m}^2$ Febrile 16.4 neutropenia¹⁹ Sepsis^{14, 18} 154–210 ml/min/1.73 m² 39.5-56 Subarachnoid 326 ml/min 100 hemorrhage¹¹ Trauma¹⁰ 166 ml/min/1.73 m² 85.7 179 ml/min/1.73 m² Traumatic 85 150 ml/min/1.73 m² brain injury⁹ (while not receiving CPP treatment)

 Cl_{cr} = creatinine clearance; CPP = cerebral perfusion pressure.

ENHANCED RENAL CLEARANCE IN PATIENTS WITH HEMORRHAGIC STROKE

Morbitzer KA et al. Crit Care Med 2019 Jun;47(6):800-808

BASELINE PATIENT CHARACTERISTICS

Variables	Aneurysmal Subarachnoid Hemorrhage (<i>n</i> = 50)	Intracerebral Hemorrhage (n = 30)
Age (yr), mean ± sp	57.2 ± 10.7	70.0 ± 13.7
Weight (kg), mean ± sp	81.2±21.7	82.9 ± 15.1
Female gender, <i>n</i> (%)	34 (68)	12 (40)
Admission Glasgow Coma Scale, median (IQR)	12.5 (6-14)	7.5 (5–13)
Admission Sequential Organ Failure Assessment score, median (IQR)	2 (2-4)	4.5 (2–5)
Hunt and Hess scale grade, median (IQR)	3 (2-4)	N/A
Modified Fisher grade, median (IQR)	3 (3–4)	N/A
Aneurysm intervention, <i>n</i> (%)		
Angiography negative	11 (22)	
Coiled	27 (54)	N/A
Clipped	10 (20)	
No intervention	2 (4)	
Symptomatic cerebral vasospasm, <i>n</i> (%)	18 (36)	N/A
Admission ICH score, median (IOR)	N/A	3 (2-4)
Admission ICH volume, mean \pm sp	N/A	64 ± 64.1
Admission serum creatinine (mg/dL), mean \pm sd	0.8±0.2	0.9 ± 0.3
Selected comorbidities, <i>n</i> (%)		
Hypertension	28 (56)	18 (60)
Type 2 diabetes mellitus	6 (12)	9 (30)

ICH = intracerebral hemorrhage, IOR = interquartile range.

STUDY PERIOD AND DISEASE SEVERITY DATA

Variables	Aneurysmal Subarachnoid Hemorrhage (<i>n</i> = 50)	Intracerebral Hemorrhage (n = 30)
Days from injury to study start, mean \pm sp	1.6 ± 1.1	1.0 ± 0.7
Study days, mean ± sp	9.0 ± 4.1	5.2 ± 3.0
Measured serum creatinine over study period (mg/dL), mean \pm sp	0.6 ± 0.2	0.8 ± 0.3
Measured CrCl over study period (mL/min/1.73 m ²), mean \pm sD ^a	147.9 ± 50.2	119.5 ± 57.2
Calculated CrCl over study period (mL/min/1.73 m ²), mean \pm sp ^b	109.1±32.7°	77.8 ± 27.6^{d}
Calculated Modification of Diet in Renal Disease over study period (mL/min/1.73 m ²), mean \pm sD ^b	126.0±41.9°	93.0±32.8 ^f
Experienced augmented renal clearance on at least 1 d during study period, n (%)	47 (94)	15 (50)
24-hr fluid balance (mL), mean \pm sp	$+498 \pm 1276.0$	+433.2±1282.4
Concomitant medications, n (%)		
Vasopressor	16 (32)	8 (26.7)
Diuretic	10 (20)	12 (40)
Hypertonic saline	22 (44)	16 (53.3)
ICU LOS (d), mean \pm sp	13.7 ± 6.1	10.0 ± 8.3
Hospital LOS (d), mean ± sp	18.6±10.0	14.9 ± 11.1
Mortality, n (%)	7 (14)	12 (40)

MEASURED MEAN CRCL VIA 8-HR URINE COLLECTION AND CALCULATED MEAN CRCL BASED ON COCKCROFT-GAULT EQUATION OVER TIME IN PATIENTS WITH ANEURYSMAL SUBARACHNOID HEMORRHAGE

CrCl Standard Deviation per Study Day (mL/min/1.73 m ²)												
Study Day	1	2	3	4	5	6	7	8	9	10	11	12
Measured CrCl	±45.9	±58.5	±46.4	±48.6	±62.2	±42.6	±54.2	±47.1	±48.1	±49.2	±39.2	±61.5
Calculated CrCl	±26.8	±29.9	±30.4	±34.8	±34.5	±32.8	±34.6	±30.0	±39.6	±30.9	±24.8	±36.7

(AR

acology – UniUD

MEASURED MEAN CRCL VIA 8-HR URINE COLLECTION AND CALCULATED MEAN CRCL BASED ON COCKCROFT-GAULT EQUATION OVER TIME IN PATIENTS WITH WITH INTRACEREBRAL HEMORRHAGE

Study Day

CrCl Standard Deviation per Study Day (mL/min/1.73 m ²)											
Study Day	1	2	3	4	5	6	7	8			
Measured CrCl	±54.5	±42.5	±85.7	±69.7	±49.7	±31.1	±46.6	±31.3			
Calculated CrCl	±26.8	±28.3	±28.5	±31.0	±30.4	±27.7	±21.0	±27.9			

macology - UniUD

CONCLUSIONS

- These findings from a prospective, observational study suggest that a substantial proportion of patients with aSAH or ICH will experience enhanced renal clearance across several days following injury, which may be otherwise unknown to the patient's care providers
- Enhanced renal clearance may lead to increased renal solute elimination over what is expected, resulting in subtherapeutic renally eliminated drug concentrations
- Future studies are warranted to determine optimal dosing regimens for renally eliminated medications in patients with aSAH or ICH and the impact of enhanced renal clearance on clinical outcomes

POPULATION PHARMACOKINETICS OF UNBOUND CEFTOLOZANE AND TAZOBACTAM IN CRITICALLY ILL PATIENTS WITHOUT RENAL DYSFUNCTION

Sime FB et al. Antimicrob Agents Chemother 2019 Jul 29. pii: AAC.01265-19

CHARACTERISTICS OF STUDY PARTICIPANTS

Characteristic	n (%) or median (IQR)
Age (years)	56 (52-61)
Sex	
Male	4 (33%)
Female	8 (67%)
Body mass index (kg/m ²)	28.5 (22.1-32.9)
Weight (kg)	79.5 (64-99)
Serum creatinine (µmol/liter)	46 (39-77)
Urinary creatinine clearance (mL/min/1.73m ²)	107 (74-145)
Albumin (g/L)	25 (19-28)
Alanine transaminase (IU/mL)	35 (23-45)
Aspartate transaminase (IU/mL)	37 (30-67)
Alkaline phosphatase (IU/mL)	102 (75-222)
Total bilirubin (µmol/liter)	12 (7-26)
APACHE II score (admission)	19.5 (16-26)
SOFA Score	6 (3, 8)

POPULATION PHARMACOKINETICS OF UNBOUND CEFTOLOZANE AND TAZOBACTAM IN CRITICALLY ILL PATIENTS WITHOUT RENAL DYSFUNCTION

Sime FB et al. Antimicrob Agents Chemother 2019 Jul 29. pii: AAC.01265-19

PROBABILITY OF TARGET ATTAINMENT (PTA) FOR CEFTOLOZANE FROM DIFFERENT CEFTOLOZANE/TAZOBACTAM DOSING REGIMENS

PK/PD	D		PTA(%) by I	MIC (1	ng/L)	during	g the fi	st 24 1	nours			PTA (%) by	MIC (1	mg/L)	at stea	ady sta	ite (48	h-72h))
target	Dose	0.03 2	0.06 4	0.12 5	0.2 5	0.5	1	2	4	8	16	0.032	0.06 4	0.12 5	0.25	0.5	1	2	4	8	16
	1.5g q8h	100	100	100	100	100	100	100	100	93	41	100	100	100	100	100	100	100	100	97	59
	1.5g 4hEI q8h	100	100	100	100	100	100	100	100	100	52	100	100	100	100	100	100	100	100	100	72
	1.5g LD + 4.5g	100	100	100	100	100	100	100	100	100	70	100	100	100	100	100	100	100	100	100	68
40%/T _{>MIC}	3 a TDS	100	100	100	100	100	100	100	100	100	93	100	100	100	100	100	100	100	100	100	97
	5g 1D5	100	100	100	100	100	100	100	100	100	10	100	100	100	100	100	100	100	100	100	57
	3g 4h EI q8h	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100
	$2 \sim I D + 0 \sim C I$	100	100	100	100	100	100	100	100	100	10	100	100	100	100	100	100	100	100	100	100
	3g LD + 9g CI	100	100	100	100	100	100	100	100	72	<u> </u>	100	100	100	100	100	100	100	100	70	21
	1.5g q8n	100	100	100	100	100	100	100	100	75	5	100	100	100	100	100	100	100	100	/8	31
	1.5g 4hEl q8h	100	100	100	100	100	100	100	100	82	1/	100	100	100	100	100	100	100	100	94	55
	1.5g LD + 4.5g CI	100	100	100	100	100	100	100	100	100	68	100	100	100	100	100	100	100	100	100	67
$60\% f \Gamma_{>\mathrm{MIC}}$	3g q8h	100	100	100	100	100	100	100	100	100	73	100	100	100	100	100	100	100	100	100	78
	3g 4h EI a8h	100	100	100	100	100	100	100	100	100	82	100	100	100	100	100	100	100	100	100	93
	05 in 21 qui										10										
	3g LD + 9g CI	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100
	1.5g q8h	100	100	100	100	100	100	99	69	5	0	100	100	100	100	100	100	100	81	55	2
	1.5g 4hEI q8h	100	100	100	100	100	100	100	<mark>6</mark> 9	0	0	100	100	100	100	100	100	100	96	69	10
	1.5g LD + 4.5g																				
$100\% fT_{>MIC}$	CI	100	100	100	100	100	100	100	100	98	3	100	100	100	100	100	100	100	100	100	61
	3g q8h	100	100	100	100	100	100	100	99	69	5	100	100	100	100	100	100	100	100	81	55
	3g 4h EI q8h	100	100	100	100	100	100	100	100	72	0	100	100	100	100	100	100	100	100	97	69
	3g LD + 9g CI	100	100	100	100	100	100	100	100	100	99	100	100	100	100	100	100	100	100	100	100

POPULATION PHARMACOKINETICS OF UNBOUND CEFTOLOZANE AND TAZOBACTAM IN CRITICALLY ILL PATIENTS WITHOUT RENAL DYSFUNCTION

Sime FB et al. Antimicrob Agents Chemother 2019 Jul 29. pii: AAC.01265-19

FRACTIONAL TARGET ATTAINMENT (≥ 85%) AGAINST P. aeruginosa MIC DISTRIBUTION FOR STEADY STATE CEFTOLOZANE EXPOSURE

Dose of ceftolozane/tazobactam (2:1 ratio)	PK/PD Target	° T Cr	% FTA for Empiric Therapy by Urinary Creatinine Clearance, mL/min/1.73m ²						
		60	100	140	180				
	$40\% fT_{>MIC}$	+	+	+	-				
1.5g q8h	60% <i>f</i> T _{>MIC}	+	+	-	-				
	$100\% fT_{>MIC}$	+	-	-	-				
	$40\% fT_{>MIC}$	+	+	+	+				
1.5g LD + 4.5 g CI	$60\% fT_{>MIC}$	+	+	+	+				
	$100\% fT_{>MIC}$	+	+	+	+				
	$40\% f_{\rm TMC}$	+	+	+	+				
3g q8h	$60\% fT_{>MIC}$	+	+	+	+				
	$100\% f_{\rm T_{\rm MIC}}$	+	+	-	_				
	$40\% fT_{>MIC}$	+	+	+	+				
3g LD + 9g CI	$60\% fT_{>MIC}$	+	+	+	+				
	$100\% f_{\rm T_{>MIC}}$	+	+	+	+				

PK/PD TARGET ATTAINMENT ANALYSES TO DETERMINE OPTIMAL DOSING OF CEFTAZIDIME-AVIBACTAM FOR THE TREATMENT OF ACUTE PULMONARY EXACERBATIONS IN PATIENTS WITH CYSTIC FIBROSIS

Bensman TJ et al. Antimicrob Agent Chemother 2017 Oct; 61: e00988-17

CF STUDY PARTICIPANT DEMOGRAPHICS AND BASELINE CHARACTERISTICS

Characteristic	Mean (SD)	Median (range)
Age (yr)	33.1 (11.0)	31.5 (24–65)
Ht (cm)	170.4 (10.1)	169.8 (155.5–184.5)
TBW (kg)	70.91 (10.2)	71.5 (48.8–87.4)
LBW (kg)	51.8 (10.0)	52.91 (33.2–66.3)
BMI (kg/m ²)	24.4 (2.6)	24.4 (19.9–29.6)
Serum creatinine concn (mg/dl)	0.8 (0.2)	0.8 (0.52–1.03)
CL _{CR} (ml/min/1.73 m ²)	121.8 (23.2)	116.8 (77.8–152)
pFEV1 ^b (%)	83.8 (21.7)	95 (44–107)

PK/PD TARGET ATTAINMENT ANALYSES TO DETERMINE OPTIMAL DOSING OF CEFTAZIDIME-AVIBACTAM FOR THE TREATMENT OF

ACUTE PULMONARY EXACERBATIONS IN PATIENTS WITH CYSTIC FIBROSIS

Bensman TJ et al. Antimicrob Agent Chemother 2017 Oct; 61: e00988-17

CUMULATIVE RESPONSE PROBABILITY OF CEFTAZIDIME AVIBACTAM 2.5 G Q8H vs. P. aeruginosa CF ISOLATES

	CRP			
Infusion	Stasis	1- to 2-log drop	Nearly maximal	Maximal response
time (h)	(<i>fT</i> _{>MIC} , 40%)	(<i>fT</i> _{>MIC} , 50%)	response (fT _{>MIC} , 65%)	(<i>fT</i> _{>MIC} , 100%)
0.5	0.824	0.805	0.76	0.449
2	0.836	0.815	0.788	0.554
5	0.844	0.829	0.814	0.757
8	0.825	0.825	0.825	0.825

MONOTHERAPY vs. COMBINATION THERAPY ?

EFFICACY OF CEFTAZIDIME-AVIBACTAM IN MONOTHERAPY OR COMBINATION THERAPY AGAINST CARBAPENEM RESISTANT GRAM NEGATIVE ORGANISMS: A META-ANALYSIS

Onorato L et al. Int J Antimicrob Agents 2019 Aug 31 online published

CHARACTERISTICS OF THE STUDIES INCLUDED IN THE META-ANALYSIS

First author, year	No. of patients	Enrolment period	Country	Study design	Age, median	Males (%)	Charlson Comorbidity	Pts with bacteremia,	Clinical isol	ates, n (%)			Combination	Outcomes	5
(Ref)		I		0	(IQR)		Index (median, IQR)	n (%)	K. pneumoniae	P. aeruginosa	polimicrobic	other	(%)	Mortality (%)	microbiological cure (%)
King, 2017 [9]	60	May 15 April 16	USA	RS	60 (51-69)	36 (60)	4.5 (3-7)	23 (38)	50 (83)	0 (0)	32 (53.3)	12 (0.2)	27 (45)	19* (31.6)	32 ⁴ (53.3)
Krapp, 2017 [10]	6	August 15 December 15	USA	RS	53 (41.2- 60.2)	3 (50)	NR	0 (0)	6 (100)	0 (0)	0 (0)	0 (0)	4 (66.7)	2 (33.3)*	3 (100) ^{b\$}
Temkin, 2017 [8]	38	2013 2016	Different countries [^]	CS	61 (47-67)	25 (65.8)	NR	26 (68.4)	34 (89.5)	2 (5.3)	11 (28.9)	2 (5.3)	25 (65.8)	15/38*	24 (63.1) ^b
Caston, 2017 [16]	8	June 2012 March 2016	Spain/Israel	RS	61 (42)° °	4 (50)	2.5 (0-7)	8 (100)	6 (75)	0 (0)	0 (0)	2 (25)	7 (87.5)	2 (25)**	NR
Shields, 2018 [11]	77	April 15 April 17	USA	RS	62 (19-91)°	47 (61)	4 (0 - 10)°	20 (26)	60 (77)	0 (0)	0 (0)	17	24 (31.2)	15** (19)	52 (67.5) ^c
Algwizani, 2018 <mark>[6]</mark>	6	NR	Saudi Arabia	CS	38.5 (15.7- 65.7)	6 (100)	NR	3 (50)	3 (50)	3 (50)	0 (0)	0 (0)	3 (50)	1 (16.7)*	5 (83.3) ^a

EFFICACY OF CEFTAZIDIME-AVIBACTAM IN MONOTHERAPY OR COMBINATION THERAPY AGAINST CARBAPENEM RESISTANT GRAM NEGATIVE ORGANISMS: A META-ANALYSIS

Onorato L et al. Int J Antimicrob Agents 2019 Aug 31 online published

CHARACTERISTICS OF THE STUDIES INCLUDED IN THE META-ANALYSIS

First author, year	No. of patients	Enrolment period	Country	Study design	Age, median	Males (%)	Charlson Comorbidity	Pts with bacteremia,	Clinical isola	ites, n (%)			Combination therapy, n	Outcomes	
(Ref)					(IQR)		Index (median, IQR)	n (%)	K. pneumoniae	P. aeruginosa	polimicrobic	other	(%)	Mortality (%)	microbiological cure (%)
De la Calle, 2018 <mark>[12]</mark>	24	October 14 December 16	Spain	RS	58.8 (16) ⁰⁰	19 (82.6)	4.3 (2.9) ⁰⁰	8 (33.3)	23 (95.8)	0 (0)	0 (0)	1 (4.2)	10 (41.7)	5 (20.8)***	NR
Rodriguez- Nunez, 2018 [13]	8	January 16 May 17	Spain	RS	64.5 (62.5- 69.2)	7 (87.5)	NR	2 (25)	1 (12.5)	8 (100)	1 (12.5)	0 (0)	6 (75)	3 (37.5)***	NR
Sousa, 2018 [14]	57	April 16 December 17	Spain	RS	64 (26-86)	44 (77)	3 (0-13)	26 (46)	54 (94.7)	0 (0)	0 (0)	3 (5.3)	11 (19.3)	13 (22.8)**	37 (64.9) ^c
Santevecchi, 2018 [7]	8	July 15 July16	USA	CS	53 (32-74)°	5 (50)	NR	2 (25)	1 (12.5)	6 (75)	6 (75)	1 (12.5)	3 (37.5)	2 (25)*	5 (71.4) ^{b\$\$}
Tumbarello, 2019 [15]	138	April 16 December 17	Italy	RS	60 (25-79)	94 (68.1)	>3, n (%): 47 (34.1)	104 (73.3)	138 (100)	0 (0)	12 (8.7)	0 (0)	109 (78.9)	47** (34.1)	NR

EFFICACY OF CEFTAZIDIME-AVIBACTAM IN MONOTHERAPY OR COMBINATION THERAPY AGAINST CARBAPENEM RESISTANT GRAM NEGATIVE ORGANISMS: A META-ANALYSIS

Onorato L et al. Int J Antimicrob Agents 2019 Aug 31 online published

META-ANALYSIS OF THE CLINICAL OUTCOME IN THE OVERALL POPULATION

Risk Ratio Combination therapy Monotherapy Events Total Events Total 95%-CI W(fixed) Study RR Hospital mortality King, 2017 27 10 33 1.10 [0.52; 2.31] 17.1% 9 0 2 Krapp, 2017 2 4 2.78 [0.20; 37.90] 1.2% Temkin, 2017 11 25 4 13 1.43 [0.57; 3.62] 10.0% 3 0 3 3.00 [0.18; 51.20] Algwizani, 2018 1 1.0% Santevecchi, 2018 3 5 1.67 [0.16; 17.89] 1.4% 62 56 1.37 [0.80; 2.34] 30.7% Subtotal Heterogeneity: I-squared=0%, p=0.9185 30-day mortality Caston, 2017 7 1.00 [0.08; 11.93] 2 0 1 1.5% 53 Shields, 2018 24 23 1.15 [0.70; 1.91] 27.3% 12 11 46 7.4% Sousa, 2018 3 10 1.25 [0.41; 3.81] 22 Tumbarello, 2019 9 0.92 [0.52; 1.64] 27.0% 31 82 122 124 1.07 [0.75; 1.53] Subtotal 63.2% Heterogeneity: I-squared=0%, p=0.9372 90-day mortality De la Calle, 2018 2 2.10 [0.43; 10.35] 3.2% 3 10 14 Rodriguez-Nunez, 2018 2 6 2 0.67 [0.11; 3.99] 2.9% Subtotal 16 16 1.42 [0.44; 4.60] 6.0% Heterogeneity: I-squared=0%, p=0.338 1.18 [0.88; 1.58] Overall 202 194 100% Heterogeneity: I-squared=0%, p=0.9869 0.512 0.1 10

Combination therapy better Monotherapy better

In the present meta-analysis we found no difference in the mortality rate and microbiological cure in patients treated with ceftazidime/avibactam in monotherapy or in combination therapy for infections due to carbapenem-resistant Enterobacteriaceae or *P. aeruginosa*

EVALUATION OF THE SYNERGY OF CEFTAZIDIME-AVIBACTAM IN COMBO WITH MEROPENEM, AMIKACIN, AZTREONAM, COLISTIN, OR FOSFOMYCIN AGAINST WELL-CHARACTERIZED MDR K. pneumoniae AND P. aeruginosa

Mikhail S et al. Antimicrob Agents Chemother 2019 Jul 25;63(8). pii: e00779-19

ACQUIRED RESISTANCE GENES DETECTED AMONG K. pneumoniae

	CZA MIC	Genes for aminoglycoside-		Fosfomycin		
Organism	(μ g/ml)	modifying enzymes	Macrolide resistance	resistance	Acquired $m eta$ -lactamase gene(s)	
K. pneumoniae						-
R8375	2	aph(4)-la, aph(3')-la, aadA2, aadA1, aac(6')-lb, aac(3)-IV	mph(A)	fosA-like	bla _{KPC-3} , bla _{SHV-12} , bla _{TEM-1} , bla _{SHV-11} , bla _{OXA-2} , bla _{OXA-9}	
R9009	2	ant(3')-la, aadA2, aac(6')-lb	mph(A)	fosA-like	bla _{KPC-3} , bla _{SHV-12} , bla _{LAP-1} , bla _{TEM-1} , bla _{SHV-11} , bla _{OXA-2} , bla _{OXA-9}	
R9064	1	ant(3')-la, aac(6')-lb		fosA-like	bla_{KPC-3} , bla_{TEM-1} , bla_{SHV-11} , bla_{OXA-2} , bla	c
R10277	0.5	ant(3')-Ia, aadA2, aac(6')-Ib	mph(A)	fosA-like	$bla_{\text{KPC-2}}$, $bla_{\text{TEM-1}}$, $bla_{\text{SHV-11}}$	
R10278	0.5	aph(4)-la, aph(3')-la, ant(3')-la, aadA2, aac(6')-lb, aac(3)-lV	mph(A)	fosA-like	bla _{KPC-2} , bla _{TEM-1} , bla _{SHV-11}	
R10501	1	aadA2, aac(6')-lb	mph(A)	fosA-like	bla _{KPC-2}	
R10506	0.5	aph(3')-la, aadA2, ant(2")-la, aac(6')-lb-cr	msr(E), mph(E), mph(A)	fosA-like	bla _{CTX-M-15} , bla _{OXA-1}	
R10508	0.5			fosA-like	bla _{KPC-2} , bla _{CTX-M-15} , bla _{TEM-1} , bla _{SHV-11}	
R9011	0.5	ant(3')-la, aadA2	mph(A)	fosA-like	$b a_{KPC-2}, b a_{CTX-M-15}, b a_{TEM-1}, b a_{SHV-11}$	
R9158	1	ant(3')-Ia, aadA2	mph(A)	fosA-like	bla_{KPC-2} , $bla_{CTX-M-15}$, bla_{TEM-1} , bla_{SHV-11}	
R10197	0.5	ant(3')-la, aadA2	mph(A)	fosA-like	bla_{KPC-2} , $bla_{CTX-M-15}$, bla_{TEM-1} , bla_{SHV-11}	
R10279		aph(4)-la, aph(3')-la, ant(3')-la, aadA2, aac(6')-lb, aac(3)-lV-like	mph(A)	fosA-like	bla _{KPC-2} , bla _{TEM-1} , bla _{SHV-11}	
R10428	1	aph(6)-la, aph(6)-ld		fosA	bla _{KPC-2} , bla _{CTX-M-15} , bla _{TEM-206} , bla _{SHV-28}	
R10499	0.5	ant(3')-la, aadA2	mph(A)	fosA-like	bla _{KPC-2} , bla _{CTX-M-15} , bla _{TEM-1} , bla _{SHV-11}	
R10500	0.5	ant(3')-la, aadA2	mph(A)	fosA-like	bla _{KPC-2} , bla _{CTX-M-15} , bla _{TEM-1} , bla _{SHV-11}	
R10502	0.5	aphA16, ant(3')-la, ant(2")-la, aac(6')-lb		fosA-like	bla _{KPC-3} , bla _{SHV-12} , bla _{TEM-1} , bla _{SHV-11} , bla _{OXA-2} , bla _{OXA-9}	
R10504	1	aph(4)-la, aadA2, aadA1, aac(6')-lb, aac(3)-lV		fosA-like	bla_{KPC-3} , bla_{SHV-12} , bla_{TEM-1} , bla_{SHV-11} , bla_{OXA-2} , bla_{OXA-2}	
R10507	0.5	ant(3')-la, aadA2, aac(6')-lb	mph(A)	fosA-like	bla _{KPC-3} , bla _{SHV-12} , bla _{TEM-1} , bla _{SHV-11} , bla _{OXA 2} , bla _{OXA 2}	
R10503	0.5	ant(3')-la, aadA2, aac(6')-lb	mph(A)	fosA-like	bla _{KPC-3} , bla _{SHV-12} , bla _{TEM-1} , bla _{SHV-11} , bla _{OVA-2} , bla _{SHV-12} , bla _{TEM-1} , bla _{SHV-11} ,	
R10505	0.5	ant(3')-Ia, aadA2, aac(6')-Ib	mph(A)	fosA-like	bla _{KPC-3} , bla _{CTX-M-3} , bla _{SHV-12} , bla _{TEM-1} , bla _{LIV-11} , bla _{CTX-M-3} , bla _{CTX-0}	
10831#1	4	aadA16, aac(6')-Ib-cr		fosA-like	bla _{KPC-2} , bla _{TEM-1} , bla _{SHV-11}	armacology -

EVALUATION OF THE SYNERGY OF CEFTAZIDIME-AVIBACTAM IN COMBO WITH MEROPENEM, AMIKACIN, AZTREONAM, COLISTIN, OR FOSFOMYCIN AGAINST WELL-CHARACTERIZED MDR K. pneumoniae AND P. aeruginosa

Mikhail S et al. Antimicrob Agents Chemother 2019 Jul 25;63(8). pii: e00779-19

ACQUIRED RESISTANCE GENES DETECTED AMONG P. aeruginosa

Organism	CZA MIC	Genes for aminoglycoside-	Macrolido resistance	Fosfomycin	Acquired R lactamace game(s)
Organishi	(µg/m)	mourying enzymes	Macronice resistance	resistance	Acquired p-lactamase gene(s)
P. aeruainosa					
R9316	8	aph(3')-IIb-like		fosA-like	
R9647	1	aph(3')-11b		fosA	
R10149	128	aph(3')-lib, ant(2")-la, aac(6')-lb		fosA-like	blaimpag, blaoxa-10
R10266	16	aph(3')-IIb-like		fosA	IMF-40, 0XA-10
R10267	64	aph(3')-Ilb-like		fosA	
R10268	4	aph(3')-IIb, aadA6, aadA1,		fosA	bla _{GES-1} , bla _{OXA-2}
		ant(2")-la, aac(6')-ll, aac(6')-lb4			
R10269	1	aph(6)-la, aph(6)-ld, aph(3')-lb-like,		fosA-like	
		aadA11, ant(2")-la			
R10272	8	aph(3')-IIb-like, aadA6, aadA2,		<i>fosA</i> -like	blaver, blaoxa-10
		aadA1, ant(2")-la, aacA16			VED-D. OXA-TO
R10274	1	aph(3')-Ilb		fosA	
R10275	2	aph(3')-Ilb-like		fosA-like	
R10378	2	aph(3')-Ilb-like		fosA	
R9333	1	aph(3')-IIb		fosA	
R10271	1	aadA16-like, aac(6')-lb4			bla _{KPC-2}
R10273	4	aph(3')-IIb-like, ant(2")-Ia		fosA	
R8381	2	aph(3')-Ilb-like		fosA	
R9010	8	aph(3')-Ilb-like		fosA-like	
R9042	2			fosA	
R10155	128	aph(3')-lib, ant(2")-la, aac(6')-lb		<i>fosA</i> -like	$bla_{\rm IMP-48}$, $bla_{\rm OXA-10}$
R10270	2	aph(6)-la, aph(6)-ld, aph(3')-lib		fosA	
9260#1	8	aph(3')-llb-like, aac(3)-llla		fosA	
9275#1	64	aph(3')-llb-like, aadA2, aac(6')-lb		<i>fosA</i> -like	bla _{CARB-2}

EVALUATION OF THE SYNERGY OF CEFTAZIDIME-AVIBACTAM IN COMBO WITH MEROPENEM, AMIKACIN, AZTREONAM, COLISTIN, OR FOSFOMYCIN AGAINST WELL-CHARACTERIZED MDR K. pneumoniae AND P. aeruginosa

Mikhail S et al. Antimicrob Agents Chemother 2019 Jul 25;63(8). pii: e00779-19

MIC REDUCTIONS OF CZA IN COMBINATION WITH ADJUNCTIVE ANTIMICROBIALS AGAINST K. pneumoniae AND P. aeruginosa NUMBERS ABOVE EACH BAR REPRESENT THE AMOUNT OF MIC50 FOR THAT COMBINATION.

CEFTOLOZANE/TAZOBACTAM FOR THE TREATMENT OF SERIOUS P. aeruginosa INFECTIONS: A MULTICENTRE NATIONWIDE CLINICAL EXPERIENCE

Bassetti M et al. Int J Antimicrob Agents 2019 Apr; 53(4): 408-415

UNIVARIATE ANALYSIS OF RISK FACTORS FOR CLINICAL FAILURE OF CEFTOLOZANE/TAZOBACTAM (C/T) THERAPY AMONG PATIENTS WITH P. aeruginosa INFECTION

Variable	n (%) ^a		P-value	Variable	n (%) ^a		P-value
	Clinical success $(n = 84)$	Clinical failure $(n = 17)$			Clinical success $(n = 84)$	Clinical failure $(n = 17)$	
Age (years) (mean ± S.D.) Sex male Charlson comorbidity index (mean ± S.D.) Underlying diseases Cardiac disease Neurological disease Chronic renal disease Diabetes mellitus Gastrointestinal disease Solid-organ tumour Solid-organ transplant Haematological malignancy COPD Cystic fibrosis Liver disease Other predisposing conditions ^b	Clinical success $(n = 84)$ 61.3 ± 18.3 55 (65.5) 4.5 ± 2.5 29 (34.5) 27 (32.1) 25 (29.8) 17 (20.2) 17 (20.2) 14 (16.7) 8 (9.5) 11 (13.1) 6 (7.1) 5 (6.0) 2 (2.4)	Clinical failure $(n = 17)$ 58.2 ± 16.7 11 (64.7) 4.1 ± 2.2 7 (41.2) 6 (35.3) 6 (35.3) 5 (29.4) 4 (23.5) 3 (17.6) 3 (17.6) 3 (17.6) 3 (17.6) 3 (17.6) 0	0.51 1 0.50 0.59 0.78 0.77 0.51 0.75 1 0.39 1 0.17 0.13 1	Severity of clinical presentation No sepsis Sepsis Septic shock ICU admission due to <i>P. aeruginosa</i> infection Polymicrobial infection Off-label indication Type of infection Nosocomial pneumonia ABSSSI cUTI cIAI Bone infection Primary bacteraemia Other infections	Clinical success (n = 84) 54 (64.3) 19 (22.6) 11 (13.1) 17 (20.2) 25 (29.8) 61 (72.6) 24 (28.6) 19 (22.6) 13 (15.5) 10 (11.9) 8 (9.5) 6 (7.1) 4 (4.8)	Clinical failure $(n = 17)$ 8 (47.1) 8 (47.1) 1 (5.9) 7 (41.2) 11 (64.7) 13 (76.5) 8 (47.1) 2 (11.8) 1 (5.9) 3 (17.6) 1 (5.9) 0 2 (11.8)	0.27 0.05 0.68 0.11 0.01 1 0.15 0.51 0.45 0.45 1 0.45 1 0.58 0.26
Corticosteroids Other immunosuppressive therapy Chemotherapy Neutropenia ^c Invasive procedures Central venous catheter Urinary catheter Previous surgery ^b Mechanical ventilation Percutaneous endoscopic gastrostomy	28 (33.3) 17 (20.2) 11 (13.1) 9 (10.7) 50 (59.5) 44 (52.4) 32 (38.1) 15 (17.9) 7 (8.3)	4 (23.5) 4 (23.5) 1 (5.9) 2 (11.8) 13 (76.5) 13 (76.5) 9 (52.9) 4 (23.5) 2 (11.8)	0.57 0.74 0.68 1 0.27 0.10 0.28 0.73 0.64	C/T treatment Combination therapy Days of treatment (mean ± S.D.) Standard dosage Off-label dosage Intermittent haemodialysis CRRT Adequate source control of the infection	46 (54.8) 30 (35.7) 18.3 ±13.7 61 (72.6) 23 (27.4) 5 (6.0) 7 (8.3) 23/33 (69.7)	$ \begin{array}{c} 6 (35.3) \\ 18.3 \pm 16.6 \\ 9 (52.9) \\ 8 (47.1) \\ 1 (5.9) \\ 5 (29.4) \\ 4/8 (50.0) \end{array} $	0.59 1 0.99 0.14 0.14 1 0.03 0.59

CEFTOLOZANE/TAZOBACTAM FOR THE TREATMENT OF SERIOUS P. aeruginosa INFECTIONS: A MULTICENTRE NATIONWIDE CLINICAL EXPERIENCE

Bassetti M et al. Int J Antimicrob Agents 2019 Apr; 53(4): 408-415

UNIVARIATE ANALYSIS OF RISK FACTORS FOR CLINICAL FAILURE OF CEFTOLOZANE/TAZOBACTAM (C/T) THERAPY AMONG PATIENTS WITH P. aeruginosa INFECTION

Variable	n (%) ^a		P-value	Variable	n (%) ^a		P-value
	Clinical success $(n = 84)$	Clinical failure $(n = 17)$			Clinical success $(n = 84)$	Clinical failure $(n = 17)$	
Age (years) (mean ± S.D.) Sex male Charlson comorbidity index (mean ± S.D.) Underlying diseases Cardiac disease Neurological disease Chronic renal disease Diabetes mellitus Gastrointestinal disease Solid-organ tumour Solid-organ transplant Haematological malignancy COPD Cystic fibrosis Liver disease Other predisposing conditions ^b	Clinical success $(n = 84)$ 61.3 ± 18.3 55 (65.5) 4.5 ± 2.5 29 (34.5) 27 (32.1) 25 (29.8) 17 (20.2) 17 (20.2) 14 (16.7) 8 (9.5) 11 (13.1) 6 (7.1) 5 (6.0) 2 (2.4)	Clinical failure $(n = 17)$ 58.2 ± 16.7 11 (64.7) 4.1 ± 2.2 7 (41.2) 6 (35.3) 6 (35.3) 5 (29.4) 4 (23.5) 3 (17.6) 3 (17.6) 3 (17.6) 3 (17.6) 3 (17.6) 0	0.51 1 0.50 0.59 0.78 0.77 0.51 0.75 1 0.39 1 0.17 0.13 1	Severity of clinical presentation No sepsis Sepsis Septic shock ICU admission due to <i>P. aeruginosa</i> infection Polymicrobial infection Off-label indication Type of infection Nosocomial pneumonia ABSSSI cUTI cIAI Bone infection Primary bacteraemia Other infections	Clinical success (n = 84) 54 (64.3) 19 (22.6) 11 (13.1) 17 (20.2) 25 (29.8) 61 (72.6) 24 (28.6) 19 (22.6) 13 (15.5) 10 (11.9) 8 (9.5) 6 (7.1) 4 (4.8)	Clinical failure $(n = 17)$ 8 (47.1) 8 (47.1) 1 (5.9) 7 (41.2) 11 (64.7) 13 (76.5) 8 (47.1) 2 (11.8) 1 (5.9) 3 (17.6) 1 (5.9) 0 2 (11.8)	0.27 0.05 0.68 0.11 0.01 1 0.15 0.51 0.45 0.45 1 0.45 1 0.58 0.26
Corticosteroids Other immunosuppressive therapy Chemotherapy Neutropenia ^c Invasive procedures Central venous catheter Urinary catheter Previous surgery ^b Mechanical ventilation Percutaneous endoscopic gastrostomy	28 (33.3) 17 (20.2) 11 (13.1) 9 (10.7) 50 (59.5) 44 (52.4) 32 (38.1) 15 (17.9) 7 (8.3)	4 (23.5) 4 (23.5) 1 (5.9) 2 (11.8) 13 (76.5) 13 (76.5) 9 (52.9) 4 (23.5) 2 (11.8)	0.57 0.74 0.68 1 0.27 0.10 0.28 0.73 0.64	C/T treatment Combination therapy Days of treatment (mean ± S.D.) Standard dosage Off-label dosage Intermittent haemodialysis CRRT Adequate source control of the infection	46 (54.8) 30 (35.7) 18.3 ±13.7 61 (72.6) 23 (27.4) 5 (6.0) 7 (8.3) 23/33 (69.7)	$ \begin{array}{c} 6 (35.3) \\ 18.3 \pm 16.6 \\ 9 (52.9) \\ 8 (47.1) \\ 1 (5.9) \\ 5 (29.4) \\ 4/8 (50.0) \end{array} $	0.59 1 0.99 0.14 0.14 1 0.03 0.59

Gómez-Junyent J et al. Int J Antimicrob Agents 2019 May; 53(5): 612-619

MINIMUM INHIBITORY CONCENTRATIONS, MINIMUM BACTERICIDAL CONCENTRATIONS, MINIMUM BIOFILM INHIBITORY CONCENTRATIONS, AND MINIMUM ERADICATION CONCENTRATIONS FOR THE DIFFERENT ANTIBIOTICS AMONG ALL PSEUDOMONAS AERUGINOSA STRAINS

A	MDR-	HUB1			XDR-H	XDR-HUB2				MDR-HUB3			
Antibiotics	MIC	MBC	MBIC	MBEC	MIC	MBC	MBIC	MBEC	MIC	MBC	MBIC	MBEC	
CST	1	4	8	> 64	2	2	8	64	2	2	8	> 64	
CAZ	64	128	> 256	> 256	32	32	> 256	> 256	64	> 256	> 256	> 256	
MEM	2	4	2	> 256	16	16	16	> 256	2	4	2	> 256	
*TOL/TZB	2	4	8	> 256	4	4	16	> 256	8	8	16	> 256	

MIC = minimum inhibitory concentration; MBC = minimum bactericidal concentration; MBIC = minimum biofilm inhibitory concentration; MBEC = minimum biofilm eradication concentration; CST = colistin; CAZ = ceftazidime; MEM = meropenem; TOL/TZB = ceftolozane/tazobactam.

* The MIC, MBC, MBIC and MBEC values refer to the concentration of ceftolozane in the presence of a fixed concentration of tazobactam at 4 mg/L.

Gómez-Junyent J et al. Int J Antimicrob Agents 2019 May; 53(5): 612-619

BACTERIAL KILLING BY MONOTHERAPIES AND THE COMBINATIONS AGAINST BIOFILM-EMBEDDED CELLS OF THREE DIFFERENT P. aeruginosa STRAINS

Gómez-Junyent J et al. Int J Antimicrob Agents 2019 May; 53(5): 612-619

Gómez-Junyent J et al. Int J Antimicrob Agents 2019 May; 53(5): 612-619

CONFOCAL LASER SCANNING MICROSCOPY IMAGES OF BIOFILM-EMBEDDED CELLS OF P. aeruginosa HUB2

ACTIVITY vs. ESBL+ Enterobacteriaceae?

Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial.

Harris PNA^{1,2,3}, Tambyah PA⁴, Lye DC^{5,6,7}, Mo Y⁴, Lee TH^{5,6,7}, Yilmaz M⁸, Alenazi TH⁹, Arabi Y⁹, Falcone M¹⁰, Bassetti M¹¹, Righi E¹¹, Rogers BA^{12,13}, Kanj S¹⁴, Bhally H¹⁵, Iredell J^{16,17}, Mendelson M¹⁸, Boyles TH¹⁸, Looke D^{3,19}, Miyakis S^{20,21,22}, Walls G²³, Al Khamis M²⁴, Zikri A²⁴, Crowe A^{25,26}, Ingram P^{27,28,29}, Daneman N³⁰, Griffin P^{19,31,32}, Athan E³³, Lorenc P¹, Baker P³⁴, Roberts L³⁵, Beatson SA³⁵, Peleg AY^{36,37,38}, Harris-Brown T¹, Paterson DL^{1,39}; MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN).

Collaborators (92)

Author information

Abstract

IMPORTANCE: Extended-spectrum β -lactamases mediate resistance to third-generation cephalosporins (eg, ceftriaxone) in Escherichia coli and Klebsiella pneumoniae. Significant infections caused by these strains are usually treated with carbapenems, potentially selecting for carbapenem resistance. Piperacillin-tazobactam may be an effective "carbapenem-sparing" option to treat extended-spectrum β -lactamase producers.

OBJECTIVES: To determine whether definitive therapy with piperacillin-tazobactam is noninferior to meropenem (a carbapenem) in patients with bloodstream infection caused by ceftriaxone-nonsusceptible E coli or K pneumoniae.

DESIGN, SETTING, AND PARTICIPANTS: Noninferiority, parallel group, randomized clinical trial included hospitalized patients enrolled from 26 sites in 9 countries from February 2014 to July 2017. Adult patients were eligible if they had at least 1 positive blood culture with E coli or Klebsiella spp testing nonsusceptible to ceftriaxone but susceptible to piperacillin-tazobactam. Of 1646 patients screened, 391 were included in the study.

INTERVENTIONS: Patients were randomly assigned 1:1 to intravenous piperacillin-tazobactam, 4.5 g, every 6 hours (n = 188 participants) or meropenem, 1 g, every 8 hours (n = 191 participants) for a minimum of 4 days, up to a maximum of 14 days, with the total duration determined by the treating clinician.

MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause mortality at 30 days after randomization. A noninferiority margin of 5% was used.

	Ceftolozane/tazobactam
FDA indications	cIAI (with metronidazole), cUTI (including
Dosing	pyclonepinicis)
$CL_{Cr} > 50 mL/min$	1.5 g i.v. q8h
CL _{Cr} 30–50 mL/min ^a	750 mg i.v. q8h
CL_{Cr} 15–29 mL/min ^b	375 mg i.v. q8h
CL _{Cr} 6–15 mL/min	N/A
$CL_{Cr} \leq 5 mL/min$	N/A
ESRD on HD	Load 750 mg i.v. \times 1, then 150 mg i.v. q8h
Infusion time	1 h
Ratio of cephalosporin to BLI	2:1 ceftolozane:tazobactam 3g tazobactam
Hepatic dosage adjustment	No
Drug interactions	No clinically significant CYP450 interactions. No other enzymatic interactions anticipated

Liscio JL et al. Int J Antimicrob Agents 2015 Sep; 46 (3): 266-71

Pneumonia study recently completed (ClinicalTrials.gov ID: NCT02070757) IV dose: 3.0g q8h (2g ceftolozane; 1g tazobactam)

cologia Clinica – UniUD

ASPECT-NP: a randomized, double-blind, phase III trial comparing efficacy and safety of ceftolozane/tazobactam versus meropenem in patients with ventilated nosocomial pneumonia (VNP)

Per-pathogen clinical cure at TOC in patients with key gram-negative LRT pathogens at baseline

Per-pathogen microbiologic eradication at TOC in patients with key gram-negative LRT pathogens at baseline

Outcome	C/T n/N (%)	Meropenem n/N (%)	% Treatment Difference (95% Cl) ^a
Clinical cure (mITT)	157/259 (60.6%)	137/240 (57.1%)	3.5 (-5.07, 12.08)
Enterobacteriaceae	120/195 (61.5%)	105/185 (56.8%)	4.8 (-5.06, 14.51)
ESBL+ Enterobacteriaceae	48/84 (57.1%)	45/73 (61.6%)	-4.5 (-19.33, 10.74)
Escherichia coli	32/51 (62.7%)	26/42 (61.9%)	0.8 (-18.13, 20.08)
ESBL+ E. coli	11/20 (55.0%)	5/10 (50.0%)	5.0 (-28.56, 37.58)
Klebsiella pneumoniae	53/86 (61.6%)	58/91 (63.7%)	-2.1 (-16.08, 11.91)
ESBL+ K. pneumoniae	31/53 (58.5%)	34/52 (65.4%)	-6.9 (-24.53, 11.39)
Pseudomonas aeruginosa	36/63 (57.1%)	39/65 (60.0%)	-2.9 (-19.36, 13.84)
MDR	13/24 (54.2%)	6/11 (54.5%)	-0.4 (-31.19, 31.65)
Haemophilus influenzae	19/22 (86.4%)	8/16 (50.0%)	36.4 (6.83, 60.09)
Clinical cure (ME)	85/113 (75.2%)	78/117 (66.7%)	8.6 (-3.19, 19.94)
Enterobacteriaceae	62/83 (74.7%)	58/90 (64.4%)	10.3 (-3.50, 23.36)
ESBL+ Enterobacteriaceae	33/45 (73.3%)	27/39 (69.2%)	4.1 (-14.75, 23.06)
Escherichia coli	17/23 (73.9%)	16/23 (69.9%)	4.3 (-20.86, 28.86)
ESBL+ E. coli	8/12 (66.7%)	5/7 (71.4%)	-4.8 (-39.06, 35.78)
Klebsiella pneumoniae	32/42 (76.2%)	33/48 (68.8%)	7.4 (-11.12, 24.91)
ESBL+ K. pneumoniae	22/30 (73.3%)	19/27 (70.4%)	3.0 (-19.53, 25.57)
Pseudomonas aeruginosa	23/29 (79.3%)	28/38 (73.7%)	5.6 (-15.40, 24.70)
MDR	9/11 (81.8%)	4/6 (66.7%)	15.2 (-22.67, 54.07)
Haemophilus influenzae	11/12 (91.7%)	4/8 (50.0%)	41.7 (2.39, 70.96)

population of pathogen or pathogen category. n, number of patients in specific category with favorable outcome. TOC, test-of-cure.

Outcome	C/T n/N (%)	Meropenem n/N (%)	% Treatment Difference (95% CI)*
Microbiologic eradication ^b (mITT)	189/259 (73.0%)	163/240 (67.9%)	5.1 (-2.93, 13.01)
Enterobacteriaceae	145/195 (74.4%)	129/185 (69.7%)	4.6 (-4.37, 13.58)
ESBL+ Enterobacteriaceae	56/84 (66.7%)	52/73 (71.2%)	-4.6 (-18.56, 9.93)
Escherichia coli	43/51 (84.3%)	33/42 (78.6%)	5.7 (-9.96, 22.08)
ESBL+ E. coli	18/20 (90.0%)	8/10 (80.0%)	10.0 (-14.69 , 41.81)
Klebsiella pneumoniae	63/86 (73.3%)	65/91 (71.4%)	1.8 (-11.30, 14.77)
ESBL+ K. pneumoniae	33/53 (62.3%)	38/52 (73.1%)	-10.8 (-27.67, 6.99)
Pseudomonas aeruginosa	47/63 (74.6%)	41/65 (63.1%)	11.5 (-4.51, 26.72)
Haemophilus influenzae	20/22 (90.9%)	11/16 (68.8%)	22.2 (-3.19, 47.37)
Microbiologic eradication ^b (ME)	79/113 (69.9%)	73/117 (62.4%)	7.5 (-4.69, 19.38)
Enterobacteriaceae	57/83 (68.7%)	59/90 (65.6%)	3.1 (-10.80, 16.75)
ESBL+ Enterobacteriaceae	30/45 (66.7%)	27/39 (69.2%)	-2.6 (-21.59, 17.14)
Escherichia coli	18/23 (78.3%)	17/23 (73.9%)	4.3 (-19.94, 28.04)
ESBL+ E. coli	10/12 (83.3%)	6/7 (85.7%)	-2.4 (-32.86, 36.53)
Klebsiella pneumoniae	30/42 (71.4%)	32/48 (66.7%)	4.8 (-14.23, 22.92)
ESBL+ K. pneumoniae	20/30 (66.7%)	18/27 (66.7%)	0.0 (-23.15, 23.54)
Pseudomonas aeruginosa	23/29 (79.3%)	21/38 (55.3%)	24.0 (1.11, 43.01)
Haemophilus influenzae	11/12 (91.7%)	4/8 (50.0%)	41.7 (2.39, 70.96)

CI, confidence interval. C/T, ceftolozane/tazobactam. ESBL, extended-spectrum β-lactamase. LRT, lower respiratory tract. ME, microbiologically evaluable. mITT, microbiologic intent-to-treat. N, number of patients in specific population of pathogen or pathogen category. n, number of patients in specific category with favorable outcome. TOC, test-of-cure.

*Unstratified Newcombe CIs.bIncludes patients with presumed eradication.

Martin-Loeches I et al. #O0302 ECCMID 2019

Unstratified Newcombe Cls.

P1917 ASPECT-NP: a randomized, double-blind, phase III trial comparing efficacy and safety of ceftolozane/tazobactam versus meropenem in patients with ventilated nosocomial pneumonia (VNP)

Marin Kollef^{*1}, Martin Novácek², Ülo Kivistik³, Álvaro Réa-Neto⁴, Nobuaki Shime⁵, Ignacio Martin-Loeches⁶, Jean-François Timsit⁷, Richard G Wunderink⁸, Christopher J. Bruno⁹, Jennifer A. Huntington⁹, Gina Lin⁹, Brian Yu⁹, Joan Butterton⁹, Elizabeth G. Rhee⁹

Results: Overall, 726 patients were randomized (362 ceftolozane/tazobactam, 364 meropenem) into the ITT population. Most (72%) had VABP, 44% were ≥65 years old, 33% had APACHE-II scores ≥20, 14% had creatinine clearance ≤ 50 mL/min and $18\% \geq 150$ mL/min, and 13% failed prior antibacterial therapy for VNP. Prior to randomization, 77% had been hospitalized for \geq 5 days and 49% ventilated for \geq 5 days. Baseline characteristics were balanced between treatment arms. In patients with positive baseline LRT cultures (70%), causative gramnegative pathogens were mainly Enterobacteriaceae (74%) and *P. aeruginosa* (25%). Ceftolozane/tazobactam was non-inferior to meropenem for the primary and key secondary endpoints (Table); mortality was highest in meropenem-treated patients with vHABP. Adverse events deemed drug-related by the investigator (DRAEs) occurred in 11% of ceftolozane/tazobactam and 8% of meropenem patients; 2% and 1%, respectively, experienced serious DRAEs. DRAEs leading to study drug discontinuation occurred in 1% of patients per arm.

CEFTAZIDIME-AVIBACTAM vs. CARBAPENEMS FOR THE TREATMENT OF INFECTIONS CAUSED BY Enterobacteriaceae: A META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS

Che H et al. Int J Antimicrob Agents 2019 Sep 15 online published

Author/ ear	Primary infections	BSI or not (sample size)	Organism	Phenotype of resistance	β-Lactamase	San	nple	Mean (yean	n age :s)	Treatmen	ıt regim	en	Outcomes
		(ommpre onze)				β	C	β	С	β		С	•
Vagenleh	Urinary tract infection	NA	Enterobacteriaceae	NA	NA	393	417	51.4	53.3	CAZ-AVI		doripenem	b c d e
er			Non- Enterobacteriaceae(4.8%*)										
016[10]													
armeli	Complicated urinary tract	BSI (10)	Enterobacteriaceae	Ceftazidime-resist	NA	144	137	64.3	61.3	2000	mg	doripenem 11	a b c d
016[9]	infection	Non-BSI (271)	Non-Enterobacteriaceae (6.8%*)	ant						ceftazidime	plus	ertapenem 1	
										500 mg		ertapenem sodium 2	
										avibactam q	l8h iv	imipenem 76	
												meropenem 57	
												other 6	
azquez	Acute pyelonephritis /	BSI (7)	E. coli	NA	NA	46	49	46.4	48.2	ceftazidime	500	imipenem-cilastatin 500	b c d e
012[11]	complicated urinary tract	Non-BSI (128)	E. cloacae							mg	plus	mg q6h iv	
	infection		P. mirabilis							avibactam	125		
			C. koseri	· · ·						mg q8h iv			
			Non-Enterobacteriaceae (1.5%*)										

BASIC CHARACTERISTICS OF INCLUDED RCTS

Note: β , BL/BLIs; C, carbapenem; a, mortality; b, clinical success; c, microbiological success; d, AEs; e, SAEs; iv, intravenous injection; NA, not available; * Proportion of people infected with non-*Enterobacteriaceae*.

CEFTAZIDIME-AVIBACTAM vs. CARBAPENEMS FOR THE TREATMENT OF INFECTIONS CAUSED BY Enterobacteriaceae: A META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS

Che H et al. Int J Antimicrob Agents 2019 Sep 15 online published

FOREST OF EFFICACY OUTCOMES IN A RANDOM-EFFECTS MODEL

CLINICAL SUCCESS

Church and Carl and and	CAZ-A		carbaper	iems		Risk Difference		Risk Difference
Study of Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Vazquez 2012	24	46	29	49	7.9%	-0.07 [-0.27, 0.13]	2012	· · · · · · · · · · · · · · · · · · ·
Carmeli 2016	132	144	129	137	47.7%	-0.02 [-0.08, 0.03]	2016	
Wagenlehner 2016	276	393	276	417	44.4%	0.04 [-0.02, 0.10]	2016	
Total (95% CI)		583		603	100.0%	0.00 [-0.06, 0.06]		+
Total events	432		434					
Heterogeneity: Tau ² =	0.00; Chi	² = 3.08	3, df = 2 (P	= 0.21)	I ² = 35%			
Test for overall effect:	Z = 0.02 (P = 0.9	(9)					-0.5 -0.25 0 0.25
								capalpenents CAZ-AVI
			Г					
	CAZ-A	VI	carbaper	MICRO	BIOLOGI	CAL SUCCESS Risk Difference		Risk Difference
Study or Subgroup	CAZ-A Events	VI Total	carbaper Events	MICRO nems Total	BIOLOGIC	CAL SUCCESS Risk Difference M-H, Random, 95% CI	Year	Risk Difference M-H, Random, 95% Cl
Study or Subgroup	CAZ-A Events 40	VI <u>Total</u> 46	carbaper Events 45	MICRO nems Total 49	BIOLOGIC Weight 28.3%	CAL SUCCESS Risk Difference <u>M-H, Random, 95% Cl</u> -0.05 [-0.17, 0.08]	Year 2012	Risk Difference M-H, Random, 95% Cl
Study or Subgroup Vazquez 2012 Wagenlehner 2016	CAZ-A Events 40 304	VI <u>Total</u> 46 393	carbaper Events 45 296	MICRO nems Total 49 417	BIOLOGIC Weight 28.3% 39.6%	CAL SUCCESS Risk Difference <u>M-H, Random, 95% Cl</u> -0.05 [-0.17, 0.08] 0.06 [0.00, 0.12]	Year 2012 2016	Risk Difference M-H, Random, 95% Cl
<u>Study or Subgroup</u> Vazquez 2012 Wagenlehner 2016 Carmeli 2016	CAZ-A Events 40 304 118	VI <u>Total</u> 46 393 144	carbaper Events 45 296 88	MICRO nems Total 49 417 137	Weight 28.3% 39.6% 32.1%	CAL SUCCESS Risk Difference <u>M-H, Random, 95% Cl</u> -0.05 [-0.17, 0.08] 0.06 [0.00, 0.12] 0.18 [0.08, 0.28]	Year 2012 2016 2016	Risk Difference M-H, Random, 95% Cl
<u>Study or Subgroup</u> Vazquez 2012 Wagenlehner 2016 Carmeli 2016 Total (95% CI)	CAZ-A Events 40 304 118	VI <u>Total</u> 46 393 144 583	carbaper Events 45 296 88	MICRO Total 49 417 137 603	BIOLOGIC Weight 28.3% 39.6% 32.1% 100.0%	CAL SUCCESS Risk Difference <u>M-H, Random, 95% Cl</u> -0.05 [-0.17, 0.08] 0.06 [0.00, 0.12] 0.18 [0.08, 0.28] 0.07 [-0.04, 0.18]	Year 2012 2016 2016	Risk Difference M-H, Random, 95% Cl

carbapenems CAZ-AVI

Test for overall effect: Z = 1.24 (P = 0.21)

COMPARATIVE ACTIVITIES OF CEFTAZIDIME-AVIBACTAM AND CEFTOLOZANE-TAZOBACTAM AGAINST ENTEROBACTERIACEAE ISOLATES PRODUCING ESBL FROM U.S. HOSPITALS

Castanehira M et al. Antimicrob Agents Chemother 2019 Jun 24; 63(7) pii: e00160-19

ACTIVITIES OF CEFTAZIDIME-AVIBACTAM, CEFTOLOZANE-TAZOBACTAM, AND COMPARATORS TESTED AGAINST 733 Enterobacteriaceae ISOLATES CARRYING ESBL GENES

	MIC (mg	/liter)		CLSI ^a		EUCAST	
Antimicrobial agent	50%	90%	Range	%S	% R	%S	%R
All isolates carrying ESBLs ($n = 733$)							
Ceftazidime-avibactam	0.25	0.5	≤0.015 to 4	100.0	0.0	100.0	0.0
Ceftolozane-tazobactam	0.5	2	≤0.12 to >16	90.2	7.3	83.9	16.1
Ceftazidime	16	>32	0.25 to >32	19.9	67.1	4.5	80.1
Aztreonam	>16	>16	0.5 to >16	10.5	78.7	1.0	89.5
Ceftriaxone	>8	>8	1 to >8	0.1	98.9	0.1	98.9
Cefepime	>16	>16	≤0.12 to >16	11.3	71.2 ^{<i>b</i>}	5.7	80.9
Piperacillin-tazobactam	4	64	0.25 to >128	84.4	7.6	71.2	15.6
Meropenem	0.03	0.06	≤0.015 to 2	99.5	0.0	100.0	0.0
Levofloxacin	8	>16	≤0.03 to >16	29.9	65.9	21.3	72.9
Gentamicin	1	>16	≤0.12 to >16	57.4	40.1	56.2	42.6
Amikacin	2	8	0.5 to >32	97.4	0.7	93.2	2.6
Trimethoprim-sulfamethoxazole	>8	>8	\leq 0.5 to $>$ 8	27.8	72.2	27.8	71.5
Tigecycline	0.25	1	≤0.06 to 8	98.1	0.1 ^c	95.8	1.9
Colistin	0.12	0.25	≤0.06 to >8	99.2 ^d		99.2	0.8

COMPARATIVE ACTIVITIES OF CEFTAZIDIME-AVIBACTAM AND CEFTOLOZANE-TAZOBACTAM AGAINST ENTEROBACTERIACEAE ISOLATES PRODUCING ESBL FROM U.S. HOSPITALS

Castanehira M et al. Antimicrob Agents Chemother 2019 Jun 24; 63(7) pii: e00160-19

NOVEL β-LACTAM-β-LACTAMASE INHIBITOR COMBINATIONS:

EXPECTATIONS FOR THE TREATMENT OF CARBAPENEM-RESISTANT GRAM-NEGATIVE PATHOGENS

Karaiskos I et al. Expert Opin Drug Metab Toxicol 2019 Feb; 15(2): 133-149

NOVEL B-LACTAMASE INHIBITORS AGAINST CARBAPENEM-RESISTANT Enterobacteriaceae (CRE) AND MULTIDRUG-RESISTANT (MDR) GRAM NEGATIVE BACTERIA

		Clinical Development	
Antibiotic	Spectrum	(since 2018)	Dosage
Ceftazidime-Avibactam	Activity against: Enterobacteriaceae and <i>P. aeruginosa</i> producing ESBL, KPC, AmpC and some class D enzymes (OXA-10, OXA-48) No active against MBL, Acinetobacter spp, and less activity against anaerobes	Approved in 2015 in U.S.A and in 2016 in Europe	CrCl >50: 2.5g q8h CrCl: 31–50: 1.25g q8h CrCl: 10–30: 0.94 g q12h CrCl <10: 0.94g q48h Hemodialysis:0.94 g q48h (administer after hemodialysis session) CVVH:1.25g q8h All doses administered over 2 hours
Meropenem-Vaborbactam	Activity against: Enterobacteriaceae producing ESBL, KPC, AmpC. No active against OXA-48-like, or MBL. As active as meropenem alone against <i>P. aeruginosa,</i> <i>Acinetobacter</i> spp., and <i>S. maltophilia</i>	Approved in 2017 in U.S.A	CrCl >50: 2g q8h CrCl: 30–49: 2g q8h CrCl: 15–29: 2g q12h CrCl <15: 1g q12h Hemodialysis: 1g q12h (administer after hemodialysis session)
Aztreonam-Avibactam	Activity against: Enterobacteriaceae producing ESBL, KPC, AmpC, OXA-48 and MBL. As active as Aztreonam alone against <i>P. aeruginosa</i> and	Phase 3	All doses administered over 3 hours CrCl > 50: ATM 6g/AVI 2g CrCl: 31–50: ATM 3g/AVI 1 g CrCl:16–30: ATM 2025 mg/AVI 675 mg
Imipenem/cilastatin- Relebactam	Activity against: Enterobacteriaceae and <i>P. aeruginosa</i> producing ESBL, KPC, AmpC and porin mutations. Diminished inhibitor activity against OXA-48.	Phase 3	IMI-REL 200/100 mg to 500/250 mg, depending on renal function, q6h All doses administrated as a 30- minute infusion
Ceftaroline fosamil- Avibactam	Activity against: Enterobacteriaceae producing ESBL, KPC, Amp C and some class D enzymes (OXA-like). No activity against MBL. No activity against A. <i>baumannii</i> or <i>P. aeruginosa</i> .	Phase 2	CPT 600 mg/AVI 600 mg q8h or q12h is under investigation
Cefepime-Zidebactam	Activity against Enterobacteriaceae and <i>P. aeruginosa</i> producing ESBL, KPC, AmpC and MBL	Phase 2	N/A
Meropenem-Nacubactam	Activity against class A and class C β-lactamases	Phase 1	N/A

EPIDEMIC OF CARBAPENEM-RESISTANT K pneumoniae IN EUROPE IS DRIVEN BY NOSOCOMIAL SPREAD

David S et al. Nat Microbiol 2019 Jul 29 Epub ahead of print

EPIDEMIC OF CARBAPENEM-RESISTANT K pneumoniae IN EUROPE IS DRIVEN BY NOSOCOMIAL SPREAD

David S et al. Nat Microbiol 2019 Jul 29 Epub ahead of print

